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PAB Exercice 6.5: Distribution de Maxwell

Considérons un atome d’un gaz. La densité de niveaux d’énergie possibles est donnée par:

3 ( )D E const E  

1) Déterminez la valeur de la constante en supposant une distribution de Boltzmann 
pour un seul atome 

2) Pour N atomes de gaz, déterminez la distribution en vitesse absolue 
(distribution de Maxwell des vitesses)
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PAB Gaz: Boltzmann, énergie quadratique
un seul atome à placer
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PAB
Photon: Bose-Einstein, énergie linéaire

plusieurs photons possible dans le même mode
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PAB Théorie cinétique des gaz

Simulation: https://pcollette.go.yo.fr/gaz_GL.html

Théorie: https://pcollette.go.yo.fr/gaz_files/aide_gaz.htm
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PAB
Exercice 6.5: Distribution de Maxwell

Energie moyenne par atome de gaz
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PAB Distribution de Maxwell
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PAB Exemple: Distribution de Maxwell

 /v m s

 vD
T= 80 K

T= 300 K

O2

m= 32 mp

Comme exemple, considérons le cas de molécules distinctes mais identiques dans une
boite. La dégénérescence correspond à la densité d’états dans cette boite et elle est
donnée par la racine carrés de l’énergie. La constante A peut être obtenue en calculant le
nombre total de molécules.

Cela permet de déterminer la distribution de l’énergie cinétique ½.mv2. On peut
transformer cette distribution en la distribution de la norme de la vitesse des molécules.
Cette fonction est connue sous le nom de distribution de Maxwell.

Statistiques des particules p.27
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PAB Vitesse et énergie moyennes
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PAB Gaz parfait
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